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Abstract. For decades, age-structured stock assessments have been a key component to managing fish-
ery resources worldwide. Fisheries management systems have been under increasing demand to generate
a greater volume and quality of age estimates. Traditional aging techniques, which require physical prepa-
ration followed by microscopic examination of fish otoliths, are labor-intensive, expensive, and inherently
subjective among individual analysts, making repeatability and precision a challenge. Here we investigated
an innovative approach to aging fish from their otoliths using Fourier-transformed near-infrared spec-
troscopy and partial least squares regression models. Models were fit to and validated on spectra and
used to microscopically estimate ages of Pacific cod from three years of fishery-independent otolith data
out of the Bering sea. Calibrated and validated models for each year, as well as on an ensemble of
the three years, yielded high precision for the multiyear model (R2 = 0.869, RMSE = 0.614, PA = 63%,
CV = 7.412), and independent year models (R2 = 0.844–0.891, RMSE = 0.555–0.615, PA = 65%, CV =
6.313–6.775). These metrics of model performance were highly comparable to precision from the tradi-
tional microscopic aging approach (R2 = 0.763–0.869, RMSE = 0.639–0.737, PA = 63%–70%, CV = 5.671–
6.698). In all cases, a two-sided Kolmogorov–Smirnov test showed no significant difference between
reference and model estimated age distributions. Our results illustrate how Fourier-transformed near-
infrared spectroscopy can be utilized on otoliths to predict age estimates with substantially greater
efficiency, good precision, high repeatability, and no loss in data integrity compared to the traditional
microscopic method for aging Pacific cod.
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INTRODUCTION

In recent decades, marine fish stocks have been
managed by a variety of integrated population
modeling approaches that are able to utilize
diverse types of data, such as fish lengths, ages,
and indices of abundance (Maunder and Punt

2013). In the United States, the National Marine
Fisheries Services, National Oceanographic, and
Atmospheric Administration (NOAA fisheries)
currently manages 474 stocks across 46 fisheries
plans (https://www.fisheries.noaa.gov/find-spec
ies). In the Alaskan region, the eastern Bering Sea
(EBS) Pacific cod (Gadus macrocephalus) fishery is
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one of the largest fisheries stocks managed, bring-
ing in a yearly average of 185,896 metric tons for
years 1991 through 2018 (Thompson 2018). Paci-
fic cod stocks are primarily managed with an
age-structured, length-at-age-structure, or stage-
structured stock assessment model (Thompson
2018). In most management cases, precise esti-
mates of population age composition are a crucial
piece of data, improving the precision of popula-
tion projections (Ricker 1975, Punt and Hilborn
1997, Maunder and Punt 2013, Ono et al. 2015).
Population growth rates of Pacific cod are esti-
mated using age-structured stock assessment
models in the Stock Synthesis model framework
(Methot and Wetzel 2013, Thompson 2018,
Methot et al. 2019). Thus, the acquisition and reli-
ability of age data from Pacific cod populations is
imperative to the management of the species.

Teleost fishes have calcium carbonate (CaCO3)
structures, called otoliths, in the inner ear that are
important for spatial orientation and hearing
(Campana 1999, Popper et al. 2005, Thomas and
Swearer 2019). Otoliths are composed primarily
of a CaCO3 structure and a proteinmatrix, though
the relative proportions of these organic con-
stituents vary among species (Degans et al. 1969,
Campana 1999, Zorica et al. 2010). These struc-
tures grow throughout the lifetime of the fish. As
they grow, otoliths incorporate temporal and
geospatial variability in chemical structure and
morphology (Gillanders 2002, Elsdon and Gillan-
ders 2004, Schaffler and Winkelman 2008, Matta
and Kimura 2012, Matta et al. 2019). This variabil-
ity provides valuable information to scientists
studying the dynamics of fish life history, most
notably the annual growth zones that allow age
estimation. Temperature has been shown to have
an effect on otolith development driving variabil-
ity in the formation of opaque and translucent
growth bands (Morales-Nin 2000, Otterlei et al.
2002, Neat et al. 2008, Hurst et al. 2010, Matta et
al. 2010, Matta et al. 2018). In addition, patterns of
temperature variability in marine ecosystems
have been demonstrated to drive shifts in fish dis-
tribution and food availability for Pollock (Gadus
chalcogrammus) and other gadidae species through-
out the Bering Sea and Alaskan Gulf (Willie-
Echeverrie and Wooster 1998, Kotwicki et al.
2005, Stabeno et al. 2012, Thorson et al. 2017).

Traditional age estimation typically involves
some sort of physical preparation, such as

sawing and toasting the otolith, followed by
microscopic examination of annual growth pat-
terns. For instance, EBS Pacific cod otoliths are
roasted, sectioned on a saw, and examined under
a dissecting microscope (Matta and Kimura
2012). This entire process can take between 6 and
10 min to derive a single age (T. E. Helser, per-
sonal observation). Trained analysts (sometimes
referred to as age readers) examine and count the
opaque and translucent bands (annuli) that cor-
respond to organic-rich summer growth and
winter growth, respectively, formed annually to
derive an age estimate. Some species have
growth patterns that are inherently difficult to
read, making age estimation difficult and leading
to low statistical precision. Moreover, the interac-
tion between environment and otolith develop-
ment may lead to additional difficulty
interpreting annual banding in otoliths, which
translates to less repeatability and more subjec-
tivity in age estimates (Matta and Kimura 2012).
These challenges can lead to increased time and
effort by analysts, reduced precision, and
increased relative bias and error in estimating
fish ages (Høie et al. 2009, Morrongiello and
Thresher 2015). The complexity encountered in
otolith annual growth patterns can make distin-
guishing a true annulus from a false annulus
(sometimes referred to as a check) a tenuous task,
resulting in difficulty producing precise age esti-
mates for Pacific cod (Beamish and McFarlane
1995). Despite Pacific cod being rather short-
lived, this challenge is particularly apparent for
fish under 6 yr of age (Roberson et al. 2005).
The goal to increase both the precision and

cost efficiency of aging fish has led researchers to
explore alternative age estimation techniques. In
recent years, near-infrared spectroscopy (NIRs)
has been explored as an alternative to micro-
scopic age estimation to reduce cost, increase
precision, and improve repeatability in estimat-
ing fish and elasmobranch ages (Wedding et al.
2014, Rigby et al. 2015, Helser et al. 2019, Passer-
otti et al. 2020, Wright et al. 2021). Applications
of this technology are emerging in other ecologi-
cal disciples including non-invasive gender iden-
tification in anurans (Vance et al. 2014) and
Chinook salmon (Hampton et al. 2002) in addi-
tion to determination of dietary contents in fecal
samples (Jean et al. 2014). The application of
spectroscopy spans various studies with the
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substantial benefit of a parsimonious increase in
repeatability, precision, and speed of estimation
(Foley et al. 1998).

Near-infrared spectroscopy functions by excit-
ing covalent bonds in organic structures with
near-infrared electromagnetic energy. The near-
infrared wavenumber range runs from about
4000 to 12,500 cm−1. The light interaction with
the sample results in measurable vibrational fre-
quencies from the organic covalent bonds (O-H,
C=O, C-H, C-N, and N-H) of those molecules
(Siesler et al. 2002, Conzen 2014). These vibra-
tions are recorded resulting in a matrix of absor-
bance values for all samples measured along the
range of wavenumbers (cm−1) applied by the
near-infrared light source. Spectral signatures for
each sample are unique to each compound mea-
sured by the distinctive combination of organic
structures that make up that compound. In oto-
liths, these spectral signatures are a good proxy
for fish age. Using multivariate calibration meth-
ods, such as partial least squares regression
(PLSr), they can be related to the reference ages,
which are estimated by the traditional micro-
scopic approach (Wedding et al. 2014, Rigby et
al. 2015, Helser et al. 2019, Passerotti et al. 2020,
Wright et al. 2021). The model development pro-
cess is complete when a predictive calibration
model is evaluated against reference ages and
tested by predicting a completely new set of rep-
resentative unknown samples (external valida-
tion).

Only two studies predicting fish age from oto-
liths using Fourier-transformed near-infrared
spectroscopy (FT-NIRs) have been published in
the northern hemisphere and, as such, additional
studies are needed to verify its applicability to
species in other ecosystems and stability over
time. In this study, we investigate the application
of FT-NIRs to estimate Pacific cod ages from oto-
lith spectra, using the PLSr model algorithm with
the purpose of examining its relative precision
and addressing temporal model performance.
Our primary objectives were specifically to (1)
develop FT-NIRs predictive models and evaluate
the model skill for estimating ages for Pacific cod
from otoliths, (2) investigate whether model skill
and precision varies across different independent
sample collection years, and (3) compare
whether a multiyear model ensemble provides
better individual year prediction.

MATERIALS AND METHODS

Otolith collection
Otoliths for Pacific cod are collected annually

from bottom trawl surveys conducted in the east-
ern Bering Sea by the AFSC. These surveys are
conducted using a 20 nautical mile fixed grid
design at 0–50 m (inner shelf), 50–100 m (middle
shelf), and 100–200 m (outer shelf) depths. The
survey area averages 493,000 km2 over approxi-
mately 300–400 hauls (Thompson 2018). Otoliths
are collected in a random sample from each haul
and transported to the Age & Growth Labora-
tory at the AFSC for age and growth studies.
From there, they are ultimately archived at the
University of Washington Fish Collection where
they are available for use by other researchers
(https://www.burkemuseum.org/collections-and
research/biology/ichthyology/otolith-database/
search.php). From this final otolith repository,
2010, 2016, and 2017 otolith collections were
obtained for our study. Temperature has been
shown to play an important role in otolith
growth and development (Morales-Nin 2000,
Otterlei et al. 2002, Neat et al. 2008, Hurst et al.
2010, Matta et al. 2010, Matta et al. 2018). These
three years represented largely different temper-
ature regimes in the Bearing sea. Therefore, they
were picked to examine how well models would
perform when analyzed across multiple years
with different temperature regimes in the eastern
Bering Sea. Broken, crystalized, and otherwise
anomalous specimens were removed from analy-
sis. This resulted in 1049 samples collected in
2010, 1525 samples collected in 2016, and 1267
samples collected in 2017 for a total of 3841 sam-
ples analyzed across the three years (Fig. 1).

Reference age determination
Reference ages for all samples (n = 3841) were

determined by microscopically counting the
annual growth rings of otoliths following the
aging guidelines and procedures of the AFSC’s
Age and Growth Manual (Matta and Kimura
2012). This was done for only one of the paired
sagittal otoliths belonging to a given fish speci-
men, leaving the other otolith for spectroscopic
analysis. Including all physical otolith prepara-
tion, such as cutting and baking, estimating age
this way takes approximately 6–10-min on aver-
age for Pacific cod (T. E. Helser, personal
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Fig. 1. Map of survey collected Pacific cod otoliths across the eastern Bering Sea shelf in the years 2010, 2016,
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observation). Approximately 20–30% of all fish
aged were randomly selected and aged again by
a second reader. Hereafter, we will refer to the
primary age reader as Reader1 and the sec-
ondary reader as Reader2. This re-aging method
is used to estimate precision metrics such as per-
cent agreement (PA) and coefficient of variation
(CV) between two readers across all (n) samples
(Beamish and Fournier 1981, Chang 1982, Chil-
ton and Beamish 1982, Kimura and Lyons 1991,
Campana et al. 1995, Campana 2001). This
method of assessing agreement, and the metrics
therefrom calculated, has been used for decades
to provide stock assessment scientists with an
estimate of aging precision for Pacific cod (Matta
and Kimura 2012, Thompson 2018).

Aging precision and bias
In order to determine how precise an aging

method is, two or more independent age esti-
mates for the same sample need to be generated.
In our study, bias between methods or readers
was calculated as the difference in integer age
between them, wherein A1 is the age provided by
the primary age reader or method and A2 is the
age provided by a secondary reader or method:

bias¼ A1�A2ð Þ:
This metric of bias was used to calculate other

metrics such as PA, based on the number of
agreed upon ages (na) � integer age. In this case,
na occurs when bias is equal to zero for a given
set of ages. This method of assessing agreement
has been outlined in Kimura and Lyons (1991)
and provides the agers with an estimate of abso-
lute agreement:

PA¼ na
n

� �
�100:

PA shows the proportion of ages for which
there is absolute agreement among readers (i.e.,
where bias = 0). However, this calculation was
extended to situations wherein bias was not
equal to zero, making it useful in assessing both
precision and bias at once. In this case, the

equation for PAwas used to calculate the relative
proportion of situations for which bias was �
some integer age. With samples for which bias
between readers was not zero, na was exchanged
for the number of ages estimated at a given inte-
ger value of bias between readers (nb). Here we
called this Percent Bias (PB):

PB¼ nb
n

� �
�100:

In our study, PB was calculated for each abso-
lute value of bias between readers in the refer-
ence data as well as between reference ages and
model estimated ages. From there, values of PB
were plotted over different values of bias
between two readers or methods. In this way,
bias was proportionally assessed in conjunction
with PA, simultaneously providing an appraisal
of the method’s bias and precision. Another way
in which bias was estimated, for better visual
analysis, was by averaging it with the following
equation:

average bias¼
∑
n

i¼1
biasi

n
:

This was calculated with and without respect
to age class to assess overall bias as well as bias
at age. In this study, we used this equation for
average bias to calculate bias in our model and
our reference age estimation. As such, the term
“average bias” was used in the context of the
overall bias of an age estimating method, be it
PLSr model or traditional microscopic age esti-
mation. Finally, bias was visualized with a plot
of a primary set of age estimates (Reader1 or ref-
erence ages) against a secondary set (Reader2 or
model age estimates). In this case, average bias
between two readers or methods was assessed as
a shift away from the one-to-one line.
Ultimately, CV, PA, PB, and average bias were

useful statistics for summarizing model perfor-
mance in terms of precision and bias. To that
end, these statistics were used, along with root
mean squared error (RMSE):

(Fig. 1. Continued)
and 2017, along with temperature data for those same years. Catch biomass denoted by point density. Base map
provided by the AFSC public access ground fish database: https://apps-afsc.fisheries.noaa.gov/RACE/groundf
ish/survey_data/default.htm.
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which were used to determine the level of preci-
sion between one set of age estimates (A1) and sec-
ond set of age estimates (A2) for the same samples.

Spectral data collection
Only one of the paired sagittal otoliths, for a

given fish, was aged via microscopic examina-
tion, as described in the Reference age determina-
tion section of this study. This left an unaltered
sister otolith for each fish. These unaltered whole

otoliths were removed from their vials and
gently blotted dry with Kimwipes to remove
excess glycerol-thymol before placement on the
aperture window of a Bruker Tango FT-NIR
spectrometer. This spectrometer is a single chan-
nel instrument that measures diffuse reflectance
using an integrated sphere. Metadata related to
these samples (species name, vessel identifica-
tion, and specimen number) were entered into
the OPUS sample description window to be
appended to the spectral scan file for later identi-
fication. These otoliths were then scanned by the
spectrometer, collecting spectra in 16 cm−1 reso-
lution at 8 wavenumber intervals with 64 co-
added scans, which resulted in approximately
937 wavenumber covariates in an n × p dimen-
sional x-matrix of spectral data, which was plot-
ted as absorbance values from 12,500 to
4000 cm−1 (Fig. 2a). In keeping with protocol
used by Helser et al. (2019), wavenumber covari-
ates above 8000 cm−1 were omitted from the
analysis as they yield little relevant information

Fig. 2. Pacific cod raw otolith spectra for all three years combined (a). Wavenumber region from 12,000 to
8000 cm−1 removed and remaining spectra split into equal width intervals for iPLSr wavenumber selection (b).
The resultant Savitzky-Golay first-derivative-transformed and second-order polynomial smoothed spectral sig-
natures, with intervals selected by iPLSr (c). Ordination of spectra with PCA to show discrimination among ages
(d). Data was color-coded by age for visualization.
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(Fig. 2b). The entire process of removing, drying,
positioning, and scanning otoliths, as well as
entering scan file metadata, took around 1.5 min
per otolith on average. This time estimate does
not include total time spend building and vali-
dating PLSr models.

Model optimization
Spectra were pre-processed and analyzed in

the chemometric software package OPUS (ver-
sion 8.1, Bruker Optics, Billerica, Massachusetts,
USA) and R statistical programing software (R
Core Team, 2019) with the R packages prospectr
(Stevens and Ramirez-Lopez 2020) and mdatools
(Kucheryavskiy 2020). OPUS software was pri-
marily used for all quantitative PLSr analyses of
spectral data. Interval partial least squares
regression (iPLSr) was used to select for the opti-
mal regions of spectral data in conjunction with
data transformations. The iPLSr method is a
good option for spectral data as a technique for
selecting the optimal combination of model
wavenumber regions (x-matrix covariates) and
data transformations, due to its relatively low
computational demands and ability to handle
the high dimensionality of a spectral data matrix
(Norgaard et al. 2000, Bras et al. 2008, Mehmood
et al. 2012, Wang et al. 2018). In this study, the
iPLSr algorithm was used to fit and cross-
validate models under combinations of vector
normalization and Savitzky-Golay first deriva-
tive transformations, in tandem with all possible
combinations of 10 equal width spectral intervals
(Fig. 2b). The iPLSr algorithm built into the
OPUS software included mean centering of the
data during the model calibration. All possible

combinations of intervals and transformations
were analyzed in tandem using RMSE values
from leave-one-out (LOO) cross-validation to
find the optimal model in terms of selected
wavenumber covariates (Table 1, Fig. 2c). Princi-
pal component analysis (PCA) was also per-
formed on the iPLSr optimized x-matrices of
spectra, as a tool to visualize separation among
age in the ordinated spectra (Fig. 2d). Eigenvec-
tor loadings of the first 2–3 principal components
(where >90% of the variance is explained) were
also used to assess for heavily loaded wavenum-
ber covariates which were important descriptors
of the variation in the spectra (Fig. 3). In all of
the models, iPLSr selected Savisky-Golay first
derivative transformation over vector normaliza-
tion. This was ultimately paired with a second-
order polynomial smoothing function within a
17-point smoothing window to reduce noise
amplification by the derivative.

Models selection and validation
Spectral data and reference ages were fit using

PLSr, a linear modeling technique that works
well on FT-NIRs spectral data as it reduces the
high dimensionality of an x-matrix of spectra
down to its principal components (Wold et al.
1984, Geladi and Kowalski 1986, Norgaard et al.
2000). To address our study objectives, we first
divided the data from each year into calibration
and validation subsets, via a 50-50 random sam-
ple spit. We then developed separate PLSr mod-
els for each year, wherein models were
independently calibrated on the requisite refer-
ence ages and spectral data in the calibration
subset for that year. These were then validated
against the validation subset for that same year.
Under this scenario, annual variability within
each year was independent of and, therefore, not
accounted for by the other two years. We then
developed a multiyear model consisting of all
three years of data combined, again using a 50-
50 random split of the data from each year into
calibration and validation data subsets. In this
case, the calibration subsets for each year were
combined into a single multiyear calibration
dataset, used to calibrate a multiyear PLSr
model. This model was then validated two ways:
(1) on the remaining validation subsets for each
year separately and (2) with these same valida-
tion subsets combined. In this way, a multiyear

Table 1. Wavenumbers selected for individual 2010,
2016, 2017, and multiyear iPLSr models.

Year
Wavenumber

regions

No.
covariates

(p)
Model
rank RMSE

2010 7997-3949 506 10 0.594
2016 7672-7296,

6560-6176,
5440-3952

281 8 0.592

2017 7464-6752,
6408-5000,
4656-3952

353 10 0.588

Multiyear 8000-5968,
5573-4757

356 10 0.623
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model was fitted to the reference age and spectra
variability among the three years and validated
to account for year directly (explicit-year valida-
tion) and indirectly (implicit-year validation).
Overall, there were three independent year mod-
els (2010, 2016, and 2017) and a multiyear model
that was validated implicitly and explicitly with
respect to year (Table 2). The estimated ages
from both the FT-NIRs and traditional aging
methods were aggregated by integer age and
compared using a Kolmogorov-Smirnov (K-S)
test. The K-S test was applied at a significance

level of α = 0.05 to test the hypothesis that
empirical distributions from reference and model
estimated ages come from the same probability
distribution.

RESULTS

Reference age determination
Out of the total 3841 Pacific cod otoliths ana-

lyzed in this study, two independent age esti-
mates were obtained by microscopic examination
from a randomly selected subset (n = 1372) of

Fig. 3. Savitzky-Golay first-derivative-transformed second-order polynomial smoothed iPLSr selected
wavenumber regions (top) and the magnitude of the eigenvector loadings across all wavenumber variables (bot-
tom) for 2010, 2016, and 2017 models.

Table 2. Model performance statistics for the 2010, 2016, 2017, and multiyear iPLSr models.

Statistics

Individual year validations
Implicit-year validation

Explicit-year validations

2010 2016 2017 (2010 + 2016 + 2017) 2010 2016 2017

Model R2 0.871 0.891 0.844 0.869 0.849 0.885 0.859
Reference R2 0.869 0.858 0.763 0.842 0.869 0.858 0.763
Model PA (%) 65 65 65 63 60 61 65
Reference PA (%) 70 67 63 66 70 67 63
Model CV 6.775 6.378 6.313 7.412 8.657 7.430 6.331
Reference CV 5.671 6.626 6.698 6.093 5.671 6.626 6.698
Model RMSE 0.584 0.555 0.625 0.614 0.690 0.600 0.619
Reference RMSE 0.737 0.639 0.734 0.703 0.737 0.639 0.734
Model Bias −0.0640 −0.0485 −0.0704 0.0018 0.0552 −0.0625 0.0072
Reference Bias −0.0333 −0.0696 −0.1004 −0.0669 −0.0333 −0.0696 −0.1004
Model RPD 2.80 3.04 2.55 2.76 2.58 2.95 2.65

Notes: Three individual models were fitted and validated independently on each of the three years of data. The multiyear
model was validated by implicit-year validation and explicit-year validation.
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these otoliths (2010, 541; 2016, 333; and 2017,
498). This method for estimating microscopic
aging precision is standard operating procedure
for Bering Sea Pacific cod (Matta and Kimura

2012). Reader agreement plots suggested good
agreement (PA = 66%) and little overall bias
between the two independent microscopic esti-
mates of age for the multiyear dataset (Fig. 4a).
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Average bias at age was also minimal, except for
samples >8 yr old (Fig. 4.b). There was also high
correlation (R2 = 0.842) between the age esti-
mates of the two age readers (Fig. 4.c). Micro-
scopic age estimation precision for multiyear
(R2 = 0.842, RMSE = 0.703, PA = 66%, CV =
6.093) and for individual year datasets (2010:
R2 = 0.869, RMSE = 0.737, PA = 70%, CV =
5.671, 2016: R2 = 0.858, RMSE = 0.639, PA =
67%, CV = 6.626, 2017: R2 = 0.763, RMSE =
0.734, PA = 63%, CV = 6.698) were comparable
to the Pacific cod long term average for micro-
scopic aging since 1990 (Matta and Kimura 2012:
PA = 65%, CV = 7.74). However, notable vari-
ability existed among the three years in terms of
between reader estimates of reference age preci-
sion. This variability was apparent across all pre-
cision statistics (Table 2).

Model optimization
After the optimal pre-processing and

wavenumber selection was chosen for each
model, using iPLSr, the resultant spectra showed
reasonable separation among ages when ordi-
nated with PCA, though the degree of this sepa-
ration decreased with age (Fig. 2d). Model
wavenumber selection with iPLSr yielded differ-
ent wavenumber regions between the three sur-
vey years (Table 1, Fig. 3). The model fitted to
2010 data kept all 10 intervals of spectra from
7997 to 3949 cm−1, whereas the 2016 and 2017
models were each split into three regions (6 and 8
intervals, respectively) and the multiyear model
kept two regions (Table 1, Fig. 3). Prediction
error from the iPLSr cross-validations of the mul-
tiyear model was higher (RMSE = 0.623) than for
any of the individual year models (2017: RMSE =
0.588, 2016: RMSE = 0.592, 2010: RMSE = 0.594)
(Table 1). The eigenvector loadings associated
with wavenumber covariates showed variation
in selected regions, with some of the selected
regions having low amplitude loadings in the
first three principal components (Fig. 3).

Model performance
Models fitted independently to each year

showed good performance, with results being
relatively indistinguishable among years (2010:
R2 = 0.871, RMSE = 0.584, PA = 65%, CV =
6.775; 2016: R2 = 0.891, RMSE = 0.555, PA =
65%, CV = 6.378; 2017: R2 = 0.844, RMSE =

0.615, PA = 65%, CV = 6.313;), especially in
terms of R2, PA, and CV (Table 2, Fig. 5). When
all of the data were combined across years into a
multiyear model and validated, using the
intrinsic-year validation, precision was slightly
lower than for models fitted to each individual
year (R2 = 0.869, RMSE = 0.614, PA = 63%,
CV = 7.412) especially in terms of PA and CV,
but less so in terms of R2 and RMSE (Table 2,
Fig. 6a). Model predictions had slight negative
average bias in older fish (after about 6 yr of
age), along with an increase in RMSE of predic-
tion as age increased (Figs. 5, 6a). This trend in
model average bias in older fish was consistent
across all model validations. Though overall
model average bias alternated between positive
and negative, it remained relatively low in all
cases (model average bias <0.07) (Table 2).
Explicit-year validation of the multiyear model

yielded relatively high precision in estimating
ages for each year when compared against refer-
ence ages (2010: R2 = 0.850, RMSE = 0.690, PA =
60%, CV = 8.657; 2016: R2 = 0.885, RMSE =
0.600, PA = 61%, CV = 7.430; 2017: R2 = 0.859,
RMSE = 0.606, PA = 65%, CV = 6.331) (Figs. 6,
8). In terms of PA and CV, models performed
slightly poorer at estimating ages from earlier col-
lections (Figs. 7, 8). This coincidedwith validation
against the 2017 dataset performing better
(R2 = 0.859, RMSE = 0.619, PA = 65%, CV =
6.331) than the between reader estimates of refer-
ence age precision (R2 = 0.763, RMSE = 0.734,
PA = 63%, CV = 6.698) (Table 2). As was also the
case with the individual model validations, RMSE
universally increased as ages increased for all
model validations andmodel bias trended slightly
negative for fish over 6 years old (Fig. 6b).
All individual year PLSr models performed

better than expected when compared to tradi-
tional precision metrics for the Pacific cod esti-
mated by Matta and Kimura (2012), in terms of
CV < 7.74 and PA > 65% (Table 2 and Fig. 8).
CV and PA statistics from individual year models
did not stray far from estimates of precision
between two readers in the reference ages
(Table 2, Fig. 8). When CV and PA were high
between two readers in the reference data, they
were relatively low between reference age and
FT-NIRs age estimates for each of the four mod-
els (2010, 2016, 2017, and multiyear) (Table 2,
Fig. 8). In terms of PA and CV, all individual and
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multiyear model validations performed better
than the precision metrics by Matta and Kimura
(2012), with the exception of the explicit-year val-
idations of the multiyear model against 2010 and

2016 datasets (Fig. 8). The implicit-year valida-
tion performed well (R2 = 0.869, RMSE = 0.614,
PA = 63%, CV = 7.412), especially in terms of
PA and CV (Table 2, Fig. 8).
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Overall, the age distributions generated by
model validations and microscopic aging did
not differ significantly according to two-sample
K-S tests (D = 0.021 to 0.047, P = 0.998 to
0.683). Results of the two-sided K-S test showed
that age distributions generated from individ-
ual model validations did not differ signifi-
cantly from traditional reference age
distributions for 2010 (D = 0.039, P = 0.878),
2016 (D = 0.021, P = 0.996), or 2017 (D = 0.022,
P = 0.998) (Fig. 5). The same was true when
comparing the reference age distributions to the
model estimated age distributions from the
implicit-year validation (D = 0.020, P = 0.835)
and also for 2010 (D = 0.047, P = 0.683), 2016
(D = 0.026, P = 0.956), and 2017 (D = 0.035,
P = 0.839) explicit-year validations of the multi-
year model.

DISCUSSION

Our study demonstrates that Pacific cod ages
can be estimated from FT-NIRs spectra of oto-
liths, using PLSr models, with a high degree of
precision that is comparable to, if not slightly
better than, traditional aging methods. PA ran-
ged from 60 to 65% and CV ranged from 6.31 to
8.66. These results were comparable with the
historic 30-yr average precision for microscopic
aging of Bearing sea Pacific cod at the AFSC,
which reported a PA of 65% (�0 yr) and CV of
7.74% (Matta and Kimura 2012). Our models’ R2

(0.84 to 0.89) and RMSE (0.56 to 0.69) were com-
parable to previous studies exploring the appli-
cation of FT-NIRs to aging fish. Analysis of
walleye pollock (Gadus chalcogrammus) otoliths
resulted in relatively good precision compared
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against ages generated by the traditional micro-
scopic aging method (R2 = 0.90, RMSE = 0.96,
PA = 79%, age range = 1–18 yr) (Helser et al.
2019). Similar results have been found for sad-
dletail snapper (Lutjanus malabaricus; R2 = 0.94,
RMSE = 1.54, age range = 1–23 yr) using oto-
liths (Wedding et al. 2014). Using mark–recap-
ture ages as a model reference, FT-NIRs also
yielded good results for estimating hammerhead
(Sphyrna mokarran: R2 = 0.89, RMSE = 0.87, age
range = 1–10 yr) and spot-tail (Carcharhinus sor-
rah: R2 = 0.84, RMSE = 0.88, age range = 1–
10 yr) sharks ages from vertebrae (Rigby et al.
2015).

The differences in model performance among
studies of FT-NIRs aging are likely driven by
uncertainty in the reference age distributions,
which in turn reduces model precision. This
means that performance of FT-NIRs and PLSr
models varies among studies and species mostly
on the basis of species-specific reference age
uncertainty. Therefore, in each study, an internal
comparison of models against their reference age
precision, as estimated between two readers, is
the most appropriate approach for assessing
model performance. Pacific cod is considered to
be a highly difficult species to age microscopi-
cally (Matta and Kimura 2012), which is notable
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in light of its short lifespan. The subjectivity
among analysts means that traditional micro-
scopic aging has bias and uncertainty, which dif-
fers among collections and analysts (Chilton and
Beamish 1982, Kimura and Lyons 1991, Kimura
et al. 1992, Beamish and McFarlane 1995). Sub-
jectivity of age estimation may be circumvented
by the more automated FT-NIRs based modeling
approach. Furthermore, the precision with which
FT-NIRs were used to estimate Pacific cod ages
was highly promising in terms of repeatability
and efficiency gains. Given, on average, a 1.5-
min FT-NIRs age estimation time for Pacific cod,
which includes physically processing and scan-
ning otoliths, compared to an approximately 6–
10-min microscopic aging time (T. E. Helser, per-
sonal observation), substantial efficiency gains can
be realized.

The variation in individual model performance
across years indicates a need to integrate a yearly
effect into the modeling framework. Temperature
regime shifts between years in the Bering Sea
drive shifts in primary production, which perme-
ate throughout the food web (Benson and Trites
2002, Polovina 2005, Overland et al. 2008, Sta-
beno et al. 2012). Environmental fluctuations and
primary productivity can alter the ratio of cal-
cium carbonate to protein in the otolith matrix
(Beamish and McFarlane 1995). These otolith
biochemical alterations are likely to affect their
spectral signatures and otolith growth intervals,
confounding microscopic aging precision
(Morales-Nin 2000, Otterlei et al. 2002, Neat et al.
2008, Matta et al. 2010, Matta et al. 2018). Spec-
tral variation and increased uncertainty in refer-
ence ages may also affect model performance, as
the linear combinations between the spectral
data and the reference ages will have increased
error. Furthermore, Pacific cod are a mobile spe-
cies and there is recent evidence to suggest that
their distribution throughout the baring sea is
affected by changing temperature regimes (Sta-
beno et al. 2012, Thompson 2018), and this rela-
tionship between temperature and distribution is
ontogenetic (Barbeaux and Hollowed 2017).
Additionally, there is evidence of a recent north-
ward expansion in Pacific cod (Spies et al. 2019).
This variation in Pacific cod distribution exists
while the sampling grids for a given stock
remain fixed. Therefore, we cannot be certain
that we are getting precisely commensurate

samples of the stock population from one survey
season to the next. This is likely to drive substan-
tial variation in stock composition among survey
years along many dimensions, one of which may
be the chemical structure of the otolith, therein
driving variation in the spectral signatures. All
these effects on the baring sea Pacific cod stocks
may additively explain the discrepancy in iPLSr
wavenumber selection among the three years we
analyzed in this study. It is important to pursue
future studies that utilize a multiyear model
updating approach to estimating age from
spectra, perhaps also spatially integrating tem-
perature and other environmental effects. Fur-
thermore, it is paramount to identify what
environmental factors are most influential on
driving variation in otolith spectra among years.
The efficiency benefits of having a dynamic mul-
tiyear model framework, rather than generating
and validating models on a yearly basis, make it
a more desirable approach for future application.
While developing FT-NIRs predictive models,

we wanted to investigate whether model skill
and precision might vary with ecosystem
changes across three different independent sam-
ple collection years and evaluate whether a mul-
tiyear model ensemble might provide better
individual year prediction. The implicit-year val-
idation of the multiyear model showed slightly
lower precision, in terms of PA and CV, than any
of the individual year validations (Table 2,
Fig. 8). This precision was also slightly lower
than between reader precision in the reference
ages. Even So, absolute model average bias and
RMSE for the implicit-year validation (model
bias = 0.0018, RMSE = 0.614) were lower than
they were between readers (reference bias =
−0.0669, RMSE = 0.703) and lower than seen in
independent year validations (Table 2). This
lower precision and reduced bias makes sense as
the variability among years, in terms of both
spectra and reference ages, should lead to a lar-
ger model error, therein reducing precision
slightly while still retaining the central tendency
among years in the data, therein reducing model
bias. This result further illustrates a need to com-
bine multiple years of data into our models, in
order to capture the greatest amount of variance
in the system and reduce the bias. The explicit-
year validation of the multiyear model showed a
decline in precision when validating the model
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against older years (Table 2, Figs. 7, 8). That the
explicit-year validation of the multiyear model
performed so differently from models validated
independently for each year is an interesting
result (Fig. 8). Given the large sample size in our
study, this result does not seem likely to be
merely an artifact of biased sampling of calibra-
tion and validation datasets for each model. One
possible explanation can be found in the selec-
tion of wavenumber variables during iPLSr
model optimization. Each of the four models
were optimized to a suite of wavenumber predic-
tors unique to each model. The multiyear model
also differed from single year models, in terms of
the suite of predictor wavenumbers that best
defined it, therein resulting in a multiyear model
less optimized for the spectral information found
in each independent year that it was validated
against (Table 1). Also, temperature has been
shown to influence otolith development
(Morales-Nin 2000, Otterlei et al. 2002, Neat et al.
2008, Hurst et al. 2010, Matta et al. 2010, Matta
et al. 2018), in turn making precise microscopic
age estimation difficult and effecting otolith
chemistry (Morales-Nin 2000, Otterlei et al. 2002,
Neat et al. 2008, Matta et al. 2010, Matta et al.
2018). Because of this, the relationship between
spectra and ages may vary more between years
than within them. This would result in models
that estimate age better within a given year.
Overall, the multiyear model provided good, but
not necessarily improved, precision over the
individual models. However, the fact that model
validations varied in performance among years,
whether individual or multiyear, further solidi-
fies the need to incorporate yearly variation into
a larger multiyear model framework.

Future research and considerations
As the results of this study have illustrated,

estimating ages of fish from otoliths with FT-
NIRs and PLSr models shows promise in terms
of precision, repeatability, and efficiency. Addi-
tional research to consider may include (1) inves-
tigation of mechanisms which relate NIR light
absorption to organic structures in the otoliths
and how this relates to age, (2) analysis of the
degree to which error and bias in the reference
ages effects model performance, and (3) evalua-
tion of performance of stock assessment models
to FT-NIRs age estimates.

While the precise molecular constituents of
fish otoliths which respond to NIR energy have
yet to be fully elucidated, the answer may lay in
the amount and relative contribution of the
organic and carbonate fractions. Otoliths are
composed primarily of a CaCO3 structure and a
protein matrix. These comprise roughly 96% and
3% of the otolith by mass, respectively (Campana
1999), though the relative proportions of these
organic constitutes vary among species (Degans
et al. 1969, Campana 1999, Zorica et al. 2010).
Within the protein matrix of the otolith, 28 pro-
teins have currently been described, about half of
which are water-soluble (Hüssy et al. 2004, Tho-
mas and Swearer 2019), and approximately 380
have been detected, most of which are not yet
identified (Thomas et al. 2019). As fish age, they
feed and grow and accrete proteins and CaCO3

in a seasonally cyclical manner (Campana 1999),
a phenomenon largely driven by temperature
differences among these seasons that alters the
concentration of soluble and insoluble proteins
in the organic matrix (Dannevig 1956, Hüssy
et al. 2004, Neat et al. 2008). Therefore, though
these organics may be a good proxy for age,
more work is needed to identify the functional
relationship between age and organic develop-
ment.
Model error in linear models summarizes the

variance and covariance among explanatory vari-
ables and values of the response variable. In our
case, this would be the variance and covariance
between the spectral variables and the measured
values in the response vector of ages. Spectral
signatures from otoliths may have unexplained
variance due to variation in their organic con-
stituents between years, across biological gradi-
ents, among regions, and among individuals.
This variation, like other sources of morphologi-
cal and chemical variation, varies among sam-
ples irrespective of age. However, spectra are
measured with near-perfect precision, rather
than estimated (Foley et al. 1998). Conversely,
reference ages are imprecisely estimated micro-
scopically, rather than measured, therein intro-
ducing a second source of error that occurs at the
level of the sample. The effect of this error source
was somewhat illustrated by Rigby et al. (2015),
wherein a PLSr model was fitted and validated
with FT-NIRs spectra for “known age” speci-
mens (mark–recapture data) and for specimens
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that had microscopically estimated ages (verte-
bral band counts) in two shark species (Sphyrna
mokarran and Carcharhinus sorrah). The PLSr
model estimated ages from “known age” speci-
mens with far greater precision than from band
count specimens, illustrating that variability in
microscopic age estimation skews FT-NIRs
model results. Conducting similar studies with
“known age” specimens across multiple species
could help us estimate these two sources of error,
which may be unique to each species. Generating
model estimates under different simulated levels
of error and bias for the ages of “known age”
specimens may provide a robust sensitivity anal-
ysis to determining the degree to which aging
error affects model performance.

As age data are primarily used in stock assess-
ment for making population projections on stock
biomass, it is worth considering how the FT-
NIRs age data type might affect such models.
The accuracy and precision with which age data
are estimated are important for reliable age-
structured stock assessment estimates, which is
the leading stock assessment format used for
Pacific cod (Thompson 2018). Therefore, the new
data type needs to be used to estimate popula-
tion parameters alongside microscopically esti-
mated ages, to see how the error therein
propagates through stock biomass estimates.
This could be done with a sort of sensitivity anal-
ysis, by varying age estimate precision, to see
how sensitive estimates of growth parameters
and stock biomass are to values of error and bias
in age data. This would involve a stock assess-
ment simulation study, in which reasonable
levels of error and bias in age structure distribu-
tions from both FT-NIRs and traditional aging
methods are simulated through stock assess-
ments with comparative operating and experi-
mental models. Furthermore, if the observed
model bias is in fact a result of uncertainty and
the under-aging of older fish, it might be a good
idea to consider a reduced age for the stock
assessment model plus group. The current plus
group cutoff age for Pacific cod is 12 yr. Perhaps
this should be reduced to 7 or 8 yr, due to aging
uncertainty. With questions such as these
addressed, FT-NIRs could prove to be a promis-
ing innovation to the future of age estimation in
fisheries programs around the world.
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